Nanoporous Materials for Hydrogen Storage and H2/D2 Isotope Separation
نویسندگان
چکیده
.................................................................................................................................................. 8 Zusammenfassung ................................................................................................................................ 11 1. General Introduction ....................................................................................................................... 14 1.1 Solid-state hydrogen storage ................................................................................................... 15 1.2. Hydrogen isotope separation ................................................................................................... 16 2. Fundamentals: Physical adsorption or Physisorption .................................................................... 19 2.1. Ordered porous materials with ultrahigh surface area ............................................................ 19 2.2. Molecular forces and interactions: Van der Waals forces (London dispersion force) ............. 23 2.2.1. Gas-solid adsorption model ........................................................................................... 25 2.2.2. Determination of the textural properties by BET method ............................................. 28 2.3. Hydrogen storage by physisorption ......................................................................................... 30 2.3.1. Hydrogen storage capacity: Excess, absolute, and total adsorption ............................. 30 2.3.2. Enthalpy of adsorption ................................................................................................... 32 2.3.3. Linear correlation between H2 uptake and surface area; Chahine’s rule ...................... 33 2.3.4. Metal-doped porous materials ...................................................................................... 35 2.4. Hydrogen isotope separation ................................................................................................... 37 2.4.1. Current technology for H2/D2 separation ....................................................................... 37 2.4.2. A novel strategy for H2/D2 separation ............................................................................ 39 3. Experimental methods .................................................................................................................... 47 3.1. Volumetric device for Pressure-Composition-Temperature characteristics (PCTs) ................. 47 3.1.1. Cold volume calibration ................................................................................................. 50 3.2. Low-pressure, high-resolution hydrogen adsorption isotherm measurement ........................ 53 3.2.1. Temperature sensor calibration ..................................................................................... 54 3.2.2. Cold volume calibration ................................................................................................. 55 3.3. Thermal desorption spectroscopy (TDS) .................................................................................. 58 3.3.1. Theoretical description of TDS ....................................................................................... 60 3.3.2. Analysis of TDS ............................................................................................................... 63 3.3.3. Experimental procedures for TDS .................................................................................. 64 6 4. Investigation of adsorption properties at RT on metal doped porous materials ......................... 71 4.
منابع مشابه
Synthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature
Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...
متن کاملQuantum Molecular Sieving in Carbons
Introduction The molecular sieving of isotopes has long been considered impossible, as they are of essentially identical size and shape. However, for light isotopes such as H2 and D2, quantum effects can lead to sufficiently large differences in de Broglie wavelengths at cryogenic conditions to make their molecular sieving possible in nanoporous materials having pores of molecular dimension. Wh...
متن کاملHydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar...
متن کاملApplication of alkali metal-doped carbons for recovery and isotope separation of hydrogen gas
Alkali metals are able to intercalate graphite expanding carbon-carbon interlayer distance along c-direction [1]. The resulting compound, for example RbC24, has nanospace, whose size is comparable to those of small molecules such as hydrogen, nitrogen, methane, etc. Watanabe et al. [2,3] found out that MC24 (M = K, Rb, Cs) is able to absorb hydrogen up to saturated composition of MC24(H2)2 at 7...
متن کاملHydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs
The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...
متن کامل